ﻻ يوجد ملخص باللغة العربية
The paper is devoted to the further study of the remarkable classes of orthogonal polynomials recently discovered by Bender and Dunne. We show that these polynomials can be generated by solutions of arbitrary quasi - exactly solvable problems of quantum mechanichs both one-dimensional and multi-dimensional. A general and model-independent method for building and studying Bender-Dunne polynomials is proposed. The method enables one to compute the weight functions for the polynomials and shows that they are the orthogonal polynomials in a discrete variable $E_k$ which takes its values in the set of exactly computable energy levels of the corresponding quasi-exactly solvable model. It is also demonstrated that in an important particular case, the Bender-Dunne polynomials exactly coincide with orthogonal polynomials appearing in Lanczos tridiagonalization procedure.
It is shown that the Confluent Heun Equation (CHEq) reduces for certain conditions of the parameters to a particular class of Quasi-Exactly Solvable models, associated with the Lie algebra $sl (2,{mathbb R})$. As a consequence it is possible to find
We consider the ambitwistor description of $mathcal N$=4 supersymmetric extension of U($N$) Yang-Mills theory on Minkowski space $mathbb R^{3,1}$. It is shown that solutions of super-Yang-Mills equations are encoded in real-analytic U($N$)-valued fun
As a straightforward generalization and extension of our previous paper, J. Phys. A50 (2017) 215201 we study aspects of the quantum and classical dynamics of a $3$-body system with equal masses, each body with $d$ degrees of freedom, with interaction
Due to its great importance for applications, we generalize and extend the approach of our previous papers to study aspects of the quantum and classical dynamics of a $4$-body system with equal masses in {it $d$}-dimensional space with interaction de
This thesis is dedicated to the study of quasi-local boundary in quantum gravity in the 3D space-time case. This research takes root in the holographic principle, which conjectures that the geometry and the dynamic of a space-time region can be entir