ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncommutative Lattices and Their Continuum Limits

90   0   0.0 ( 0 )
 نشر من قبل Fedele Lizzi
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider finite approximations of a topological space $M$ by noncommutative lattices of points. These lattices are structure spaces of noncommutative $C^*$-algebras which in turn approximate the algebra $cc(M)$ of continuous functions on $M$. We show how to recover the space $M$ and the algebra $cc(M)$ from a projective system of noncommutative lattices and an inductive system of noncommutative $C^*$-algebras, respectively.



قيم البحث

اقرأ أيضاً

We address the problem of the continuum limit for a system of Hausdorff lattices (namely lattices of isolated points) approximating a topological space $M$. The correct framework is that of projective systems. The projective limit is a universal spac e from which $M$ can be recovered as a quotient. We dualize the construction to approximate the algebra ${cal C}(M)$ of continuous functions on $M$. In a companion paper we shall extend this analysis to systems of noncommutative lattices (non Hausdorff lattices).
We present a lattice formulation of noncommutative Yang-Mills theory in arbitrary even dimensionality. The UV/IR mixing characteristic of noncommutative field theories is demonstrated at a completely nonperturbative level. We prove a discrete Morita equivalence between ordinary Yang-Mills theory with multi-valued gauge fields and noncommutative Yang-Mills theory with periodic gauge fields. Using this equivalence, we show that generic noncommutative gauge theories in the continuum can be regularized nonperturbatively by means of {it ordinary} lattice gauge theory with t~Hooft flux. In the case of irrational noncommutativity parameters, the rank of the gauge group of the commutative lattice theory must be sent to infinity in the continuum limit. As a special case, the construction includes the recent description of noncommutative Yang-Mills theories using twisted large $N$ reduced models. We study the coupling of noncommutative gauge fields to matter fields in the fundamental representation of the gauge group using the lattice formalism. The large mass expansion is used to describe the physical meaning of Wilson loops in noncommutative gauge theories. We also demonstrate Morita equivalence in the presence of fundamental matter fields and use this property to comment on the calculation of the beta-function in noncommutative quantum electrodynamics.
We describe a unitary matrix model which is constructed from discrete analogs of the usual projective modules over the noncommutative torus and use it to construct a lattice version of noncommutative gauge theory. The model is a discretization of the noncommutative gauge theories that arise from toroidal compactification of Matrix theory and it includes a recent proposal for a non-perturbative definition of noncommutative Yang-Mills theory in terms of twisted reduced models. The model is interpreted as a manifestly star-gauge invariant lattice formulation of noncommutative gauge theory, which reduces to ordinary Wilson lattice gauge theory for particular choices of parameters. It possesses a continuum limit which maintains both finite spacetime volume and finite noncommutativity scale. We show how the matrix model may be used for studying the properties of noncommutative gauge theory.
An approach to calculating approximate solutions to the continuum Schwinger-Dyson equations is outlined, with examples for phi^4 in D=1. This approach is based on the source Galerkin methods developed by Garcia, Guralnik and Lawson. Numerical issues and opportunities for future calculations are also discussed briefly.
We exhibit simple lattice systems, motivated by recently proposed cold atom experiments, whose continuum limits interpolate between real and $p$-adic smoothness as a spectral exponent is varied. A real spatial dimension emerges in the continuum limit if the spectral exponent is negative, while a $p$-adic extra dimension emerges if the spectral exponent is positive. We demonstrate Holder continuity conditions, both in momentum space and in position space, which quantify how smooth or ragged the two-point Greens function is as a function of the spectral exponent. The underlying discrete dynamics of our model is defined in terms of a Gaussian partition function as a classical statistical mechanical lattice model. The couplings between lattice sites are sparse in the sense that as the number of sites becomes large, a vanishing fraction of them couple to one another. This sparseness property is useful for possible experimental realizations of related systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا