ﻻ يوجد ملخص باللغة العربية
We relate the non-perturbative exact results in supersymmetry to perturbation theory using several different methods: instanton calculations at weak or strong coupling, a method using gaugino condensation and another method relating strong and weak coupling. This allows many precise numerical checks of the consistency of these methods, especially the amplitude of instanton effects, and of the network of exact solutions in supersymmetry. However, there remain difficulties with the instanton computations at strong coupling.
We derive exact formulae for the partition function and the expectation values of Wilson/t Hooft loops, thus directly checking their S-duality transformations. We focus on a special class of N=2 gauge theories on S^4 with fundamental matter. In parti
We propose a new set of s-confining theories with product gauge groups and no tree-level superpotential, based on a model with one antisymmetric matter field and four flavors of quarks. For each product group we find a set of gauge-invariant operator
At large N, a field theory and its orbifolds (given by projecting out some of its fields) share the same planar graphs. If the parent-orbifold relation continues even nonperturbatively, then properties such as confinement and chiral symmetry breaking
I propose a controlled approximation to QCD-like theories with massless quarks by employing supersymmetric QCD perturbed by anomaly-mediated supersymmetry breaking. They have identical massless particle contents. Thanks to the ultraviolet-insensitivi
Recently a non-perturbative formula for the RG flow between UV and IR fixed points of the coefficient in the trace of the energy momentum tensor of the Euler density has been obtained for N=1 SUSY gauge theories by relating the trace and R-current an