ﻻ يوجد ملخص باللغة العربية
We introduce a general theory of twisting algebraic structures based on actions of a bialgebra. These twists are closely related to algebraic deformations and also to the theory of quasi-triangular bialgebras. In particular, a deformation produced from a universal deformation formula (UDF) is a special case of a twist. The most familiar example of a deformation produced from a UDF is perhaps the Moyal product which (locally) is the canonical quantization of the algebra of functions on a symplectic manifold in the direction of the Poisson bracket. In this case, the derivations comprising the Poisson bracket mutually commute and so this quantization is essentially obtained by exponentiating this bracket. For more general Poisson manifolds, this formula is not applicable since the associated derivations may no longer commute. We provide here generalizations of the Moyal formula which (locally) give canonical quantizations of various Poisson manifolds. Specifically, whenever a certain central extension of a Heisenberg Lie group acts on a manifold, we obtain a quantization of its algebra of functions in the direction of a suitable Poisson bracket obtained from noncommuting derivations.
In this paper we provide an explicit construction of star products on U(g)-module algebras by using the Fedosov approach. This construction allows us to give a constructive proof to Drinfeld theorem and to obtain a concrete formula for Drinfeld twist
In this paper we provide a quantization via formality of Poisson actions of a triangular Lie algebra $(mathfrak g,r)$ on a smooth manifold $M$. Using the formality of polydifferential operators on Lie algebroids we obtain a deformation quantization o
In this paper we investigate the algebraic structure of AdS/CFT in the strong-coupling limit. We propose an expression for the classical r-matrix with (deformed) u(2|2) symmetry, which leads to a quasi-triangular Lie bialgebra as the underlying symme
We analyze the ability of the three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species in eight sets with similar quadrupole deformations, we sh
Cohomology and deformation theories are developed for Poisson algebras starting with the more general concept of a Leibniz pair, namely of an associative algebra $A$ together with a Lie algebra $L$ mapped into the derivations of $A$. A bicomplex (wit