ترغب بنشر مسار تعليمي؟ اضغط هنا

q$-Deformed Chern Class, Chern-Simons and Cocycle Hierarchy

170   0   0.0 ( 0 )
 نشر من قبل Mazq
 تاريخ النشر 1994
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, from the $q$-gauge covariant condition we define the $q$-deformed Killing form and the second $q$-deformed Chern class for the quantum group $SU_{q}(2)$. Developing Zuminos method we introduce a $q$-deformed homotopy operator to compute the $q$-deformed Chern-Simons and the $q$-deformed cocycle hierarchy. Some recursive relations related to the generalized $q$-deformed Killing forms are derived to prove the cocycle hierarchy formulas directly. At last, we construct the $q$-gauge covariant Lagrangian and derive the $q$-deformed Yang-Mills equation. We find that the components of the singlet and the adjoint representation are separated in the $q$-deformed Chern class, $q$-deformed cocycle hierarchy and the $q$-deformed Lagrangian, although they are mixed in the commutative relations of BRST algebra.



قيم البحث

اقرأ أيضاً

We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the $Q$-ball. Similar to the case of gauged $Q$-balls, Maxwell-Chern-Simons $Q$-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$ Chern-Simons-Matter theory. The theory admits a unique triplet mass deformation term consistent with supersymmetry. We explicitly construct the mass-deformed $mathcal{N} = 3$ theory in $mathcal{N} = 1$ superspace using a fundamental and an anti-fundamental superfield.
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7-branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for two-dimensional QCD.
59 - Pablo Mora 2000
In this paper we continue the study of the model proposed in the previous paper hep-th/0002077. The model consist of a system of extended objects of diverse dimensionalities, with or without boundaries, with actions of the Chern-Simons form for a sup ergroup. We also discuss possible connections with Superstring/M-theory.
Recently, a variety of deformed $T^{1,1}$ manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [arXiv:2010.05573]. We refer to the NLSMs with the integrable def ormed $T^{1,1}$ as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic $T^{1,1}$ model and 2) a $G/H$ $lambda$-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا