ﻻ يوجد ملخص باللغة العربية
We argue that CP is a gauge symmetry in string theory. As a consequence, CP cannot be explicitly broken either perturbatively or non-pertubatively; there can be no non-perturbative CP-violating parameters. String theory is thus an example of a theory where all $theta$ angles arise due to spontaneous CP violation, and are in principle calculable.
Modular transformations of string theory are shown to play a crucial role in the discussion of discrete flavor symmetries in the Standard Model. They include CP transformations and provide a unification of CP with traditional flavor symmetries within
The dissertation consists of two parts. The first presents an account of the effective worldvolume description of $N$ coincident M2-branes ending on an M5-brane in M-theory. It reviews Basu and Harveys recent description of the worldvolume theory of
It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra contains $psl(4|4,mathbb R)$ superalgebr
We discuss the possibility of finding scenarios, within type IIB string theory compactified on Calabi-Yau orientifolds with fluxes, for realizing gauge mediated supersymmetry breaking. We find that while in principle such scenarios are not ruled out,
We suggest a means of obtaining certain Greens functions in 3+1-dimensional ${cal N} = 4$ supersymmetric Yang-Mills theory with a large number of colors via non-critical string theory. The non-critical string theory is related to critical string theo