Renormalizable Expansion for Nonrenormalizable Theories: II. Gauge Higher Dimensional Theories


الملخص بالإنكليزية

The previously developed renormalizable perturbative 1/N-expansion in higher dimensional scalar field theories is extended to gauge theories with fermions. It is based on the $1/N_f$-expansion and results in a logarithmically divergent perturbation theory in arbitrary high odd space-time dimension. Due to the self-interaction of non-Abelian fields the proposed recipe requires some modification which, however, does not change the main results. The new effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. The original dimensionful gauge coupling plays a role of mass and is also logarithmically renormalized. Comments on the unitarity of the resulting theory are given.

تحميل البحث