ﻻ يوجد ملخص باللغة العربية
Some results obtained by a new method for solving the Bethe-Salpeter equation are presented. The method is valid for any kernel given by irreducible Feynman graphs. The Bethe-Salpeter amplitude, both in Minkowski and in Euclidean spaces, and the binding energy for ladder + cross-ladder kernel are found. We calculate also the corresponding electromagnetic form factor.
We shortly review different methods to obtain the scattering solutions of the Bethe-Salpeter equation in Minkowski space. We emphasize the possibility to obtain the zero energy observables in terms of the Euclidean scattering amplitude.
We present a method to directly solving the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the singularities which appear in the kernel, propagators and Bethe-Salpeter amplitude
The method of solving the Bethe-Salpeter equation in Minkowski space, which we developed previously for spinless particles, is extended to a system of two fermions. The method is based on the Nakanishi integral representation of the amplitude and on
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
We review a method to directly solve the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the many singularities which appear in the kernel and propagators. The off-mass shell scat