ﻻ يوجد ملخص باللغة العربية
In the previous papers, we studied the t Hooft-Polyakov (TP) monopole configurations in the U(2) gauge theory on the fuzzy 2-sphere,and showed that they have nonzero topological charge in the formalism based on the Ginsparg-Wilson (GW) relation. In this paper, we will show an index theorem in the TP monopole background, which is defined in the projected space, and provide a meaning of the projection operator. We also extend the index theorem to general configurations which do not satisfy the equation of motion, and show that the configuration space can be classified into the topological sectors. We further calculate the spectrum of the GW Dirac operator in the TP monopole backgrounds, and consider the index theorem in these cases.
The improvement of fermionic operators for Ginsparg-Wilson fermions is investigated. We present explicit formulae for improved Greens functions, which apply both on-shell and off-shell.
We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity pa
In the previous paper hep-th/0312199 we studied the t Hooft-Polyakov (TP) monopole configuration in the U(2) gauge theory on the fuzzy 2-sphere and showed that it has a nonzero topological charge in the formalism based on the Ginsparg-Wilson relation
We investigate quantum corrections in non-commutative gauge theory on fuzzy sphere. We study translation invariant models which classically favor a single fuzzy sphere with U(1) gauge group. We evaluate the effective actions up to the two loop level.
We present a model for the Dirac magnetic monopole, suitable for the strong coupling regime. The magnetic monopole is static, has charge g and mass M, occupying a volume of radius R ~ O (g^2/M). It is shown that inside each n-monopole there exist inf