ﻻ يوجد ملخص باللغة العربية
The nature of the deconfining phase transition in the 2+1-dimensional SU(N) Georgi-Glashow model is investigated. Within the dimensional-reduction hypothesis, the properties of the transition are described by a two-dimensional vectorial Coulomb gas models of electric and magnetic charges. The resulting critical properties are governed by a generalized SU(N) sine-Gordon model with self-dual symmetry. We show that this model displays a massless flow to an infrared fixed point which corresponds to the Z$_N$ parafermions conformal field theory. This result, in turn, supports the conjecture of Kogan, Tekin, and Kovner that the deconfining transition in the 2+1-dimensional SU(N) Georgi-Glashow model belongs to the Z$_N$ universality class.
The classic argument by Polyakov showing that monopoles produce confinement in the Higgs phase of the Georgi-Glashow model is generalized to study the spectrum of k-strings. We find that the leading-order low-density approximation yields Casimir scal
We study correlations functions of magnetic vortices $V$ and Polyakov loop $P$ operators in the 2+1 dimensional Georgi-Glashow model in the vicinity of the deconfining phase transition. In this regime the (dimensionally reduced) model is mapped onto
We investigate the dissipative real-time evolution of the order parameter for the deconfining transition in the pure SU(2) gauge theory. The approach to equilibrium after a quench to temperatures well above the critical one is described by a Langevin
We study the finite-temperature properties of the supersymmetric version of (2+1)D Georgi-Glashow model. As opposed to its nonsupersymmetric counterpart, the parity symmetry in this theory at zero temperature is spontaneously broken by the bilinear p
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe