ﻻ يوجد ملخص باللغة العربية
Based on dilatonic dark energy model, we consider two cases: dilaton field with positive kinetic energy(coupled quintessence) and with negative kinetic energy(phantom). In the two cases, we investigate the existence of attractor solutions which correspond to an equation of state parameter $omega=-1$ and a cosmic density parameter $Omega_sigma=1$. We find that the coupled term between matter and dilaton cant affect the existence of attractor solutions. In the Mexican hat potential, the attractor behaviors, the evolution of state parameter $omega$ and cosmic density parameter $Omega$, are shown mathematically. Finally, we show the effect of coupling term on the evolution of $X(frac{sigma}{sigma_0})$ and $Y(frac{dot{sigma}}{sigma^2_0})$ with respect to $N(lna)$ numerically.
In this paper, we regard dilaton in Weyl-scaled induced gravitational theory as coupled Quintessence, which is called DCQ model by us. Parametrization of the dark energy model is a good method by which we can construct the scalar potential directly f
In this paper, we regard dilaton in Weyl-scaled induced gravitational theory as a coupled quintessence. Based on this consideration, we investigate the dilaton coupled quintessence(DCQ) model in $omega-omega$ plane, which is defined by the equation o
We investigate charged black holes coupled to a massive dilaton. It is shown that black holes which are large compared to the Compton wavelength of the dilaton resemble the Reissner-Nordstrom solution, while those which are smaller than this scale re
We consider the propagation of electromagnetic waves through a dilaton-Maxwell domain wall of the type introduced by Gibbons and Wells [G.W. Gibbons and C.G. Wells, Class. Quant. Grav. 11, 2499-2506 (1994)]. It is found that if such a wall exists wit
We explore a cyclic universe due to phantom and quintessence fields. We find that, in every cycle of the evolution of the universe, the phantom dominates the cosmic early history and quintessence dominates the cosmic far future. In this model of univ