ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of Neutral Fermion in Linear Magnetic Field through Pauli Interaction

105   0   0.0 ( 0 )
 نشر من قبل Yongsung Yoon
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the production rate of neutral fermions in linear magnetic fields through the Pauli interaction. It is found that the production rate is exponentially decreasing function with respect to the inverse of the magnetic field gradient, which shows the non-perturbative characteristics analogous to the Schwinger process. It turns out that the production rate density depends on both the gradient and the strength of magnetic fields in 3+1 dimension. It is quite different from the result in 2+1 dimension, where the production rate depends only on the gradient of the magnetic fields, not on the strength of the magnetic fields. It is also found that the production of neutral fermions through the Pauli interaction is a magnetic effect whereas the production of charged particles through minimal coupling is an electric effect.



قيم البحث

اقرأ أيضاً

We have calculated the explicit form of the real and imaginary parts of the effective potential for uniform magnetic fields which interact with spin-1/2 fermions through the Pauli interaction. It is found that the non-vanishing imaginary part develop s for a magnetic field stronger than a critical field, whose strength is the ratio of the fermion mass to its magnetic moment. This implies the instability of the uniform magnetic field beyond the critical field strength to produce fermion pairs with the production rate density $w(x)=frac{m^{4}}{24pi}(frac{|mu B|}{m}-1)^{3}(frac{|mu B|}{m}+3)$ in the presence of Pauli interaction.
We calculate the effective potential of a strong magnetic field induced by fermions with anomalous magnetic moments which couple to the electromagnetic field in the form of the Pauli interaction. For a uniform magnetic field, we find the explicit for m of the effective potential. It is found that the non-vanishing imaginary part develops for a magnetic field stronger than a critical field and has a quartic form which is quite different from the exponential form of the Schwinger process. We also consider a linear magnetic field configuration as an example of inhomogeneous magnetic fields. We find that the imaginary part of the effective potential is nonzero even below the critical field and shows an exponentially decreasing behavior with respect to the inverse of the magnetic field gradient, which is the non-perturbative characteristics analogous to the Schwinger process. These results imply the instability of the strong magnetic field to produce fermion pairs as a purely magnetic effect. The possible applications to the astrophysical phenomena with strong magnetic field are also discussed.
We construct the grand partition function of the system of chiral fermions in a uniform magnetic field from Landau levels, through which all thermodynamic quantities can be obtained. Taking use of Abel-Plana formula, these thermodynamic quantities ca n be expanded as series with respect to a dimensionless variable $b=2eB/T^{2}$. We find that the series expansions of energy density, pressure, magnetization intensity and magnetic susceptibility contain a singular term with $ln b^{2}$, while particle number density, entropy density and heat capacity are power series of $b^{2}$. The asymptotic behaviors of these thermodynamic quantities in extreme conditions are also discussed.
Energy levels are investigated for two charged particles possessing an attractive, momentum-independent, zero-range interaction in a uniform magnetic field. A transcendental equation governs the spectrum, which is characterized by a collective Landau -level quantum number incorporating both center-of-mass and relative degrees of freedom. Results are obtained for a system of one charged and one neutral particle, with the interaction chosen to produce a bound state in vanishing magnetic field. Beyond deriving the weak-field expansion of the energy levels, we focus on non-perturbative aspects. In the strong-field limit, or equivalently for a system in the unitary limit, a single bound level with universal binding energy exists. By contrast, excited states are resonances that disappear into the continuum as the magnetic field is raised beyond critical values. A hyperbola is derived that approximates the number of bound levels as a function of the field strength remarkably well.
152 - Taichi Itoh , Hiroshi Kato 1998
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamical ly generated, when the coefficient of the CS term $kappa$ equals $N e^2/4 pi$. The resultant vacuum becomes the finite-density state half-filled by fermions. For $kappa=N e^2/2 pi$, we find the fermion remains massless and only the magnetic field is induced. For $kappa=0$, spontaneous magnetization does not occur and should be regarded as an external field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا