ﻻ يوجد ملخص باللغة العربية
We introduce new representations to formulate quantum mechanics on noncommutative coordinate space, which explicitly display entanglement properties between degrees of freedom of different coordinate components and hence could be called entangled state representations. Furthermore, we derive unitary transformations between the new representations and the ordinary one used in noncommutative quantum mechanics (NCQM) and obtain eigenfunctions of some basic operators in these representations. To show the potential applications of the entangled state representations, a two-dimensional harmonic oscillator on the noncommutative plane with both coordinate-coordinate and momentum-momentum couplings is exactly solved.
We study the effect of noncommutativity of space on the physics of a quantum interferometer located in a rotating disk in a gauge field background. To this end, we develop a path-integral approach which allows defining an effective action from which
A general three-dimensional noncommutative quantum mechanical system mixing spatial and spin degrees of freedom is proposed. The analogous of the harmonic oscillator in this description contains a magnetic dipole interaction and the ground state is e
Dyson published in 1990 a proof due to Feynman of the Maxwell equations. This proof is based on the assumption of simple commutation relations between position and velocity. We first study a nonrelativistic particle using Feynman formalism. We show t
We establish a relation between entanglement in simple quantum mechanical qubit systems and in wormhole physics as considered in the context of the AdS/CFT correspondence. We show that in both cases, states with the same entanglement structure, indis
We discuss various descriptions of a quantum particle on noncommutative space in a (possibly non-constant) magnetic field. We have tried to present the basic facts in a unified and synthetic manner, and to clarify the relationship between various app