ترغب بنشر مسار تعليمي؟ اضغط هنا

Further Investigation on Chiral Symmetry Breaking in a Uniform External Magnetic Field

373   0   0.0 ( 0 )
 نشر من قبل Chung Ngoc Leung
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study chiral symmetry breaking in QED when a uniform external magnetic field is present. We calculate higher order corrections to the dynamically generated fermion mass and find them to be small. In so doing we correct an error in the literature regarding the matrix structure of the fermion self-energy.



قيم البحث

اقرأ أيضاً

71 - D.-S. Lee , C.N. Leung , 1997
Using the nonperturbative Schwinger-Dyson equation, we show that chiral symmetry is dynamically broken in QED at weak couplings when an external magnetic field is present, and that chiral symmetry is restored at temperatures above $T_c simeq alphapi^ 2/sqrt{2 pi |eH|}$, where $alpha$ is the fine structure constant and $H$ is the magnetic field strength.
75 - D.-S. Lee , C.N. Leung , 1997
Chiral symmetry is dynamically broken in quenched, ladder QED at weak gauge couplings when an external magnetic field is present. In this paper, we show that chiral symmetry is restored above a critical chemical potential and the corresponding phase transition is of first order. In contrast, the chiral symmetry restoration at high temperatures (and at zero chemical potential) is a second order phase transition.
70 - C. N. Leung 1998
The effects of an external field on the dynamics of chiral symmetry breaking are studied using quenched, ladder QED as our model gauge field theory. It is found that a uniform external magnetic field enables the chiral symmetry to be spontaneously br oken at weak gauge couplings, in contrast with the situation when no external field is present. The broken chiral symmetry is restored at high temperatures as well as at high chemical potentials. The nature of the two chiral phase transitions is different: the transition at high temperatures is a continuous one whereas the phase transition at high chemical potentials is discontinuous.
In this work we study finite density effects in spontaneous chiral symmetry breaking as well as chiral phase transition under the influence of a background magnetic field in $ 2+1 $ dimensions. For this purpose, we use an improved holographic softwal l model based on an interpolated dilaton profile. We find inverse magnetic catalysis at finite density. We observe that the chiral condensate decreases as the density increases, and the two effects (addition of magnetic field and chemical potential) sum up decreasing even more the chiral condensate.
145 - C. N. Leung , S.-Y. Wang 2005
The gauge independence of the dynamical fermion mass generated through chiral symmetry breaking in QED in a strong, constant external magnetic field is critically examined. We present a (first, to the best of our knowledge) consistent truncation of t he Schwinger-Dyson equations in the lowest Landau level approximation. We demonstrate that the dynamical fermion mass, obtained as the solution of the truncated Schwinger-Dyson equations evaluated on the fermion mass shell, is manifestly gauge independent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا