ترغب بنشر مسار تعليمي؟ اضغط هنا

Factorization of the Two Loop Four-Particle Amplitude in Superstring Theory Revisited

65   0   0.0 ( 0 )
 نشر من قبل Chuan-Jie Zhu
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study in detail the factorization of the newly obtained two-loop four-particle amplitude in superstring theory. In particular some missing factors from the scalar correlators are obtained correctly, in comparing with a previous study of the factorization in two-loop superstring theory. Some details for the calculation of the factorization of the kinematic factor are also presented.



قيم البحث

اقرأ أيضاً

The overall coefficient of the two-loop 4-particle amplitude in superstring theory is determined by making use of the factorization and unitarity. To accomplish this we computed in detail all the relevant tree and one-loop amplitudes involved and det ermined their overall coefficients in a consistent way.
77 - Hiroshi Kunitomo 2021
We reconstruct a complete type II superstring field theory with L-infinity structure in a symmetric way concerning the left- and right-moving sectors. Based on the new construction, we show again that the tree-level S-matrix agrees with that obtained using the first-quantization method. Not only is this a simple and elegant reconstruction, but it also enables the action to be mapped to that in the WZW-like superstring field theory, which has not yet been constructed and fills the only gap in the WZW-like formulation.
We present the analytic evaluation of the two-loop corrections to the amplitude for the scattering of four fermions in Quantum Electrodynamics, $f^- + f^+ + F^- + F^+ to 0$, with $f$ and $F$ representing a massless and a massive lepton, respectively. Dimensional regularization is employed to evaluate the loop integrals. Ultraviolet divergences are removed by renormalizing the coupling constant in the ${overline{text{MS}}}$-scheme, and the lepton mass as well as the external fields in the on-shell scheme. The analytic result for the renormalized amplitude is expressed as Laurent series around $d=4$ space-time dimensions, and contains Generalized Polylogarithms with up to weight four. The structure of the residual infrared divergences of the virtual amplitude is in agreement with the prediction of the Soft Collinear Effective Theory. Our analytic results are an essential ingredient for the computation of the scattering cross section for massive fermion-pair production in massless fermion-pair annihilation, i.e. $f^- f^+ to F^- F^+$, and crossing related processes such as the elastic scattering $f F to f F$, with up to Next-to-Next to Leading Order accuracy.
We present the fully integrated form of the two-loop four-gluon amplitude in $mathcal{N} = 2$ supersymmetric quantum chromodynamics with gauge group SU$(N_c)$ and with $N_f$ massless supersymmetric quarks (hypermultiplets) in the fundamental represen tation. Our result maintains full dependence on $N_c$ and $N_f$, and relies on the existence of a compact integrand representation that exhibits the duality between color and kinematics. Specializing to the $mathcal{N} = 2$ superconformal theory, where $N_f = 2N_c$ , we obtain remarkably simple amplitudes that have an analytic structure close to that of $mathcal{N} = 4$ super-Yang-Mills theory, except that now certain lower-weight terms appear. We comment on the corresponding results for other gauge groups.
In this paper we describe how representation theory of groups can be used to shorten the derivation of two loop partition functions in string theory, giving an intrinsic description of modular forms appearing in the results of DHoker and Phong [1]. O ur method has the advantage of using only algebraic properties of modular functions and it can be extended to any genus g.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا