ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetry from Boundary Conditions

122   0   0.0 ( 0 )
 نشر من قبل Gero von Gersdorff
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study breaking and restoration of supersymmetry in five-dimensional theories by determining the mass spectrum of fermions from their equations of motion. Boundary conditions can be obtained from either the action principle by extremizing an appropriate boundary action (interval approach) or by assigning parities to the fields (orbifold approach). In the former, fields extend continuously from the bulk to the boundaries, while in the latter the presence of brane mass-terms cause fields to jump when one moves across the branes. We compare the two approaches and in particular we carefully compute the non-trivial jump profiles of the wavefunctions in the orbifold picture for very general brane mass terms. We also include the effect of the Scherk-Schwarz mechanism in either approach and point out that for a suitable tuning of the boundary actions supersymmetry is present for arbitrary values of the Scherk-Schwarz parameter. As an application of the interval formalism we construct bulk and boundary actions for super Yang-Mills theory. Finally we extend our results to the warped Randall-Sundrum background.



قيم البحث

اقرأ أيضاً

In this paper we perform, in the spirit of the holographic correspondence, a particular asymptotic limit of N=2, AdS_4 supergravity to N=2 supergravity on a locally AdS_3 boundary. Our boundary theory enjoys OSp(2|2) x SO(1,2) invariance and is shown to contain the D=3 super-Chern Simons OSp(2|2) theory considered in [Alvarez:2011gd] and featuring unconventional local supersymmetry. The model constructed in that reference describes the dynamics of a spin-1/2 Dirac field in the absence of spin 3/2 gravitini and was shown to be relevant for the description of graphene, near the Dirac points, for specific spatial geometries. Our construction yields the model in [Alvarez:2011gd] with a specific prescription on the parameters. In this framework the Dirac spin-1/2 fermion originates from the radial components of the gravitini in D=4.
We describe new boundary conditions for AdS$_2$ in Jackiw-Teitelboim gravity. The asymptotic symmetry group is enhanced to $r{Diff}(S^1)ltimes C^infty(S^1)$ whose breaking to $r{SL}(2,R)times r{U}(1)$ controls the near-AdS$_2$ dynamics. The action re duces to a boundary term which is a generalization of the Schwarzian theory and can be interpreted as the coadjoint action of the warped Virasoro group. This theory reproduces the low-energy effective action of the complex SYK model. We compute the Euclidean path integral and derive its relation to the random matrix ensemble of Saad, Shenker and Stanford. We study the flat space version of this action, and show that the corresponding path integral also gives an ensemble average, but of a much simpler nature. We explore some applications to near-extremal black holes.
We propose matching pairs of half-BPS boundary conditions related by IR dualities of 3d $mathcal{N}=2$ gauge theories. From these matching pairs we construct duality interfaces. We test our proposals by anomaly matching and the computation of supersy mmetric indices. Examples include basic abelian dualities, level-rank dualities, and Aharony dualities.
87 - M.Caselle , R.Fiore , F.Gliozzi 1991
Gauge systems in the confining phase induce constraints at the boundaries of the effective string, which rule out the ordinary bosonic string even with short distance modifications. Allowing topological excitations, corresponding to winding around th e colour flux tube, produces at the quantum level a universal free fermion string with a boundary phase nu=1/4. This coincides with a model proposed some time ago in order to fit Monte Carlo data of 3D and 4D Lattice gauge systems better. A universal value of the thickness of the colour flux tube is predicted.
The interaction of a quantum field with a background containing a Dirac delta function with support on a surface of codimension 1 represents a particular kind of matching conditions on that surface for the field. In this article we show that the worl dline formalism can be applied to this model. We obtain the asymptotic expansion of the heat-kernel corresponding to a scalar field on $mathbb{R}^{d+1}$ in the presence of an arbitrary regular potential and subject to this kind of matching conditions on a flat surface. We also consider two such surfaces and compute their Casimir attraction due to the vacuum fluctuations of a massive scalar field weakly coupled to the corresponding Dirac deltas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا