ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncommutative Conformally Coupled Scalar Field Cosmology and its Commutative Counterpart

83   0   0.0 ( 0 )
 نشر من قبل Gustavo Dourado Barbosa
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. D. Barbosa




اسأل ChatGPT حول البحث

We study the implications of a noncommutative geometry of the minisuperspace variables for the FRW universe with a conformally coupled scalar field. The investigation is carried out by means of a comparative study of the universe evolution in four different scenarios: classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative, the last two employing the Bohmian formalism of quantum trajectories. The role of noncommutativity is discussed by drawing a parallel between its realizations in two possible frameworks for physical interpretation: the NC-frame, where it is manifest in the universe degrees of freedom, and in the C-frame, where it is manifest through theta-dependent terms in the Hamiltonian. As a result of our comparative analysis, we find that noncommutative geometry can remove singularities in the classical context for sufficiently large values of theta. Moreover, under special conditions, the classical noncommutative model can admit bouncing solutions characteristic of the commutative quantum FRW universe. In the quantum context, we find non-singular universe solutions containing bounces or being periodic in the quantum commutative model. When noncommutativity effects are turned on in the quantum scenario, they can introduce significant modifications that change the singular behavior of the universe solutions or that render them dynamical whenever they are static in the commutative case. The effects of noncommutativity are completely specified only when one of the frames for its realization is adopted as the physical one. Non-singular solutions in the NC-frame can be mapped into singular ones in the C-frame.



قيم البحث

اقرأ أيضاً

We construct black hole solutions in four-dimensional quadratic gravity, supported by a scalar field conformally coupled to quadratic terms in the curvature. The conformal matter Lagrangian is constructed with powers of traces of a conformally covari ant tensor, which is defined in terms of the metric and a scalar field, and has the symmetries of the Riemann tensor. We find exact, neutral and charged, topological black hole solutions of this theory when the Weyl squared term is absent from the action functional. Including terms beyond quadratic order on the conformally covariant tensor, allows to have asymptotically de Sitter solutions, with a potential that is bounded from below. For generic values of the couplings we also show that static black hole solutions must have a constant Ricci scalar, and provide an analysis of the possible asymptotic behavior of both, the metric as well as the scalar field in the asymptotically AdS case, when the solutions match those of general relativity in vacuum at infinity. In this frame, the spacetime fulfils standard asymptotically AdS boundary conditions, and in spite of the non-standard couplings between the curvature and the scalar field, there is a family of black hole solutions in AdS that can be interpreted as localized objects. We also provide further comments on the extension of these results to higher dimensions.
We study some consequences of noncommutativity to homogeneous cosmologies by introducing a deformation of the commutation relation between the minisuperspace variables. The investigation is carried out for the Kantowski-Sachs model by means of a comp arative study of the universe evolution in four different scenarios: the classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative. The comparison is rendered transparent by the use of the Bohmian formalism of quantum trajectories. As a result of our analysis, we found that noncommutativity can modify significantly the universe evolution, but cannot alter its singular behavior in the classical context. Quantum effects, on the other hand, can originate non-singular periodic universes in both commutative and noncommutative cases. The quantum noncommutative model is shown to present interesting properties, as the capability to give rise to non-trivial dynamics in situations where its commutative counterpart is necessarily static.
141 - Pouria Pedram 2015
We exactly solve the Wheeler-DeWitt equation for the closed homogeneous and isotropic quantum cosmology in the presence of a conformally coupled scalar field and in the context of the generalized uncertainty principle. This form of generalized uncert ainty principle is motivated by the black hole physics and it predicts a minimal length uncertainty proportional to the Planck length. We construct wave packets in momentum minisuperspace which closely follow classical trajectories and strongly peak on them upon choosing appropriate initial conditions. Moreover, based on the DeWitt criterion, we obtain wave packets that exhibit singularity-free behavior.
130 - Marco Astorino 2014
Solution generating techniques for general relativity with a conformally (and minimally) coupled scalar field are pushed forward to build a wide class of asymptotically flat, axisymmetric and stationary spacetimes continuously connected to Kerr. This family contains, amongst other things, rotating extensions of the Bekenstein black hole and also its angular and mass multipolar generalisations. Further addition of NUT charge is also discussed.
Gravity theory based on current algebra is formulated. The gauge principle rather than the general covariance combined with the equivalence principle plays the pivotal role in the formalism, and the latter principles are derived as a consequence of t he theory. In this approach, it turns out that gauging the Poincare algebra is not appropriate but gauging the $SO(N,M)$ algebra gives a consistent theory. This makes it possible to have Anti-de Sitter and de Sitter space-time by adopting a relation between the spin connection and the tetrad field. The Einstein equation is a part of our basic equation for gravity which is written in terms of the spin connection. When this formalism is applied to the $E(11)$ algebra in which the three-form antisymmetric tensor is a part of gravity multiplet, we have a current algebra gravity theory based on M-theory to be applied to cosmology in its classical limit. Without introducing any other ad-hoc field, we can obtain accelerating universe in the manner of the inflating universe at its early stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا