Maximal and non-maximal supergravities in three spacetime dimensions allow for a large variety of semisimple and non-semisimple gauge groups, as well as complex gauge groups that have no analog in higher dimensions. In this contribution we review the recent progress in constructing these theories and discuss some of their possible applications.
A class of conformally flat and asymptotically anti-de Sitter geometries involving profiles of scalar fields is studied from the point of view of gauged supergravity. The scalars involved in the solutions parameterise the SL(N,R)/SO(N) submanifold of
the full scalar coset of the gauged supergravity, and are described by a symmetric potential with a universal form. These geometries descend via consistent truncation from distributions of D3-branes, M2-branes, or M5-branes in ten or eleven dimensions. We exhibit analogous solutions asymptotic to AdS_6 which descend from the D4-D8-brane system. We obtain the related six-dimensional theory by consistent reduction from massive type IIA supergravity. All our geometries correspond to states in the Coulomb branch of the dual conformal field theories. We analyze linear fluctuations of minimally coupled scalars and find both discrete and continuous spectra, but always bounded below.
We study dimensional reductions of M-theory/type II strings down to 6D in the presence of fluxes and spacetime filling branes and orientifold planes of different types. We classify all inequivalent orientifold projections giving rise to $mathcal{N}=(
1,1)$ supergravities in 6D and work out the embedding tensor/fluxes dictionary for each of those. Finally we analyze the set of vacua for the different classes of reductions and find an abundance of no-scale type Minkowski vacua, as well as a few novel examples of (A)dS extrema.
Magical supergravities are a very special class of supergravity theories whose symmetries and matter content in various dimensions correspond to symmetries and underlying algebraic structures of the remarkable geometries of the Magic Square of Freude
nthal, Rozenfeld and Tits. These symmetry groups include the exceptional groups and some of their special subgroups. In this paper, we study the general gaugings of these theories in six dimensions which lead to new couplings between vector and tensor fields. We show that in the absence of hypermultiplet couplings the gauge group is uniquely determined by a maximal set of commuting translations within the isometry group SO(n_T,1) of the tensor multiplet sector. Moreover, we find that in general the gauge algebra allows for central charges that may have nontrivial action on the hypermultiplet scalars. We determine the new minimal couplings, Yukawa couplings and the scalar potential.
We consider classes of T_6 orientifolds, where the orientifold projection contains an inversion I_{9-p} on 9-p coordinates, transverse to a Dp-brane. In absence of fluxes, the massless sector of these models corresponds to diverse forms of N=4 superg
ravity, with six bulk vector multiplets coupled to N=4 Yang--Mills theory on the branes. They all differ in the choice of the duality symmetry corresponding to different embeddings of SU(1,1)times SO(6,6+n) in Sp(24+2n,R), the latter being the full group of duality rotations. Hence, these Lagrangians are not related by local field redefinitions. When fluxes are turned on one can construct new gaugings of N=4 supergravity, where the twelve bulk vectors gauge some nilpotent algebra which, in turn, depends on the choice of fluxes.
By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in R,C,H,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rose
nfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R,C,H,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4x4 magic square, while the higher levels are comprised of a 3x3 square in D = 4, a 2x2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of an exotic theory with G/H duality structure F4(4)/Sp(3) x Sp(1).