ﻻ يوجد ملخص باللغة العربية
Using techniques developed in a previous paper three-point functions in field theories described by holographic renormalization group flows are computed. We consider a system of one active scalar and one inert scalar coupled to gravity. For the GPPZ flow, their dual operators create states that are interpreted as glueballs of the N=1 SYM theory, which lies at the infrared end of the renormalization group flow. The scattering amplitudes for three-glueball processes are calculated providing precise predictions for glueball decays in N=1 SYM theory. Numerical results for low-lying glueballs are included.
We present a general framework with which the Schwarzschild-Tangherlini metric of a point particle in arbitrary dimensions can be derived from a scattering amplitude to all orders in the gravitational constant, $G_N$, in covariant gauge (i.e. $R_xi$-
We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Gras
We study Feynman integrals and scattering amplitudes in ${cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagram
We calculate the mass of the lowest lying spin two glueball in N=1 super Yang-Mills from the dual Klebanov-Strassler background. We show that the Regge trajectory obtained is linear; the 0++, 1-- and 2++ states lie on a line of slope 0.23 -measured i
In this paper we provide a first attempt towards a toric geometric interpretation of scattering amplitudes. In recent investigations it has indeed been proposed that the all-loop integrand of planar N=4 SYM can be represented in terms of well defined