ﻻ يوجد ملخص باللغة العربية
We derive some non-perturbative results in 1+1 and 2+1 dimensions within the context of the particle path-integral representation for a Dirac field propagator in the presence of an external field, in a formulation introduced by Migdal in 1986. We consider the specific properties of the path-integral expressions corresponding to the 1+1 and 2+1 dimensional cases, presenting a derivation of the chiral anomaly in the former and of the Chern-Simons current in the latter. We also discuss particle propagation in constant electromagnetic field backgrounds.
We present different non-perturbative calculations within the context of Migdals representation for the propagator and effective action of quantum particles. We first calculate the exact propagators and effective actions for Dirac, scalar and Proca f
Following the idea of Alekseev and Shatashvili we derive the path integral quantization of a modified relativistic particle action that results in the Feynman propagator of a free field with arbitrary spin. This propagator can be associated with the
Through a very careful analysis of Diracs 1932 paper on the Lagrangian in Quantum Mechanics as well as the second and third editions of his classic book {it The Principles of Quantum Mechanics}, I show that Diracs contributions to the birth of the pa
We exploit the Kallen-Lehman representation of the two-point Green function to prove that the gluon propagator cannot go to zero in the infrared limit. We are able to derive also the functional form of it. This means that current results on the latti
In quantum field theory the path integral is usually formulated in the wave picture, i.e., as a sum over field evolutions. This path integral is difficult to define rigorously because of analytic problems whose resolution may ultimately require knowl