ﻻ يوجد ملخص باللغة العربية
We analyze proton decay via dimension six operators in certain GUT-like models derived from Type IIA orientifolds with $D6$-branes. The amplitude is parametrically enhanced by a factor of $alpha_{GUT}^{-1/3}$ relative to the coresponding result in four-dimensional GUTs. Nonetheless, even assuming a plausible enhancement from the threshold corrections, we find little overall enhancement of the proton decay rate from dimension six operators, so that the predicted lifetime from this mechanism remains close to $10^{36}$ years.
In this paper we study dynamical supersymmetry breaking in absence of gravity with the matter content of the minimal supersymmetric standard model. The hidden sector of the theory is a strongly coupled gauge theory, realized in terms of microscopic v
In arXiv:1403.0389 and arXiv:1610.07140 intersecting $D$-branes in flat space were studied at finite temperature in the Yang-Mills approximation. The one-loop correction to the tachyon mass was computed and the critical temperature at which the tachy
String instanton effects in Higgs physics are discussed through a type IIA model based on T^{6}/(Z^{2}times Z^{2}) orentifold compactifaction. By inclusion of rigid E2-branes, the model exhibits a MSSM-like spectrum, as well as extra mu and quartic H
We discuss the gravitino problem in contest of the Exotic see-saw mechanism for neutrinos and Leptogenesis, UV completed by intersecting D-branes Pati-Salam models. In the Exotic see-saw model, supersymmetry is broken at high scales $M_{SUSY}>10^{9},
We show that contrary to first expectations realistic three generation supersymmetric intersecting brane world models give rise to phenomenologically interesting predictions about gauge coupling unification. Assuming the most economical way of realiz