ﻻ يوجد ملخص باللغة العربية
We provide evidence of the relation between supersymmetric gauge theories and matrix models beyond the planar limit. We compute gravitational R^2 couplings in gauge theories perturbatively, by summing genus one matrix model diagrams. These diagrams give the leading 1/N^2 corrections in the large N limit of the matrix model and can be related to twist field correlators in a collective conformal field theory. In the case of softly broken SU(N) N=2 super Yang-Mills theories, we find that these exact solutions of the matrix models agree with results obtained by topological field theory methods.
We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the clas
In this short note we construct the DLCQ description of the flux seven-branes in type IIA string theory and discuss its basic properties. The matrix model involves dipole fields. We explain the relation of this nonlocal matrix model to various orbifo
We review some old and new methods of reduction of the number of degrees of freedom from ~N^2 to ~N in the multi-matrix integrals.
We point out that in some situations it is possible to use matrix model techniques a la Dijkgraaf-Vafa to perturbatively compute D-brane instanton effects. This provides an explanation in terms of stringy instantons of the results in hep-th/0311181.
We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the S