ﻻ يوجد ملخص باللغة العربية
In a {cal N}=1 superspace setup and using dimensional regularization, we give a general and simple prescription to compute anomalous dimensions of composite operators in {cal N}=4, SU(N) supersymmetric Yang-Mills theory, perturbatively in the coupling constant g. We show in general that anomalous dimensions are responsible for the appearance of higher order poles in the perturbative expansion of the two-point function and that their lowest contribution can be read directly from the coefficient of the 1/epsilon^2 pole. As a check of our procedure we rederive the anomalous dimension of the Konishi superfield at order g^2. We then apply this procedure to the case of the double trace, dimension 4, superfield in the 20 of SU(4) recently considered in the literature. We find that its anomalous dimension vanishes for all N in agreement with previous results.
We compute four-point correlation functions of scalar composite operators in the N=4 supercurrent multiplet at order g^4 using the N=1 superfield formalism. We confirm the interpretation of short-distance logarithmic behaviours in terms of anomalous
In this paper we develop a supersymmetric version of unitarity cut method for form factors of operators from the chiral truncation of the the $mathcal{N}=4$ stress-tensor current supermultiplet $T^{AB}$. The relation between the superform factor with
In a {cal N}=1 superspace formulation of {cal N}=4 Yang-Mills theory we obtain the anomalous dimensions of chiral operators with large R charge J to infty keeping g^2 N/J^2 finite, to all orders of perturbation theory in the planar limit. Our result
According to the AdS/CFT correspondence, the ${cal N}=4$ supersymmetric Yang-Mills (SYM) theory is studied through its gravity dual whose configuration has two boundaries at the opposite sides of the fifth coordinate. At these boundaries, in general,
${cal N}=4$ Super Yang-Mills theory is a highly constrained theory, and therefore a valuable tool to test the understanding of less constrained Yang-Mills theories. Our aim is to use it to test our understanding of both the Landau gauge beyond pertur