ﻻ يوجد ملخص باللغة العربية
We explore a nonlinear realization of the (2+1)-dimensional Lorentz symmetry with a constant vacuum expectation value of the second rank anti-symmetric tensor field. By means of the nonlinear realization, we obtain the low-energy effective action of the Nambu-Goldstone bosons for the spontaneous Lorentz symmetry breaking.
We study nonlinear vacuum electrodynamics in a first-order formulation proposed by Plebanski. By applying a Dirac constraint analysis, we derive an effective Hamiltonian, together with the equations of motion. We show that there exists a large class
Due to the incompatibility of the nonlinear realization of superconformal symmetry and dilatation symmetry with the dilaton as the compensator field, in the present paper it shows an alternative mechanism of spontaneous breaking the N=2 superconforma
Using the isomorphism $mathfrak{o}(3;mathbb{C})simeqmathfrak{sl}(2;mathbb{C})$ we develop a new simple algebraic technique for complete classification of quantum deformations (the classical $r$-matrices) for real forms $mathfrak{o}(3)$ and $mathfrak{
We present a model of gravity based on spontaneous Lorentz symmetry breaking. We start from a model with spontaneously broken symmetries for a massless 2-tensor with a linear kinetic term and a nonderivative potential, which is shown to be equivalent
The dynamics of the non-Abelian vortex-string, which describes its low energy oscillations into the target $D=3+1$ spacetime as well as its orientations in the internal space, is derived by the approach of nonlinear realization. The resulting action