We discuss noncommutative solitons on a noncommutative torus and their application to tachyon condensation. In the large B limit, they can be exactly described by the Powers-Rieffel projection operators known in the mathematical literature. The resulting soliton spectrum is consistent with T-duality and is surprisingly interesting. It is shown that an instability arises for any D-branes, leading to the decay into many smaller D-branes. This phenomenon is the consequence of the fact that K-homology for type II von Neumann factor is labeled by R.