ﻻ يوجد ملخص باللغة العربية
The correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary world sheets can be expressed in terms of Wilson graphs in appropriate three-manifolds. We present a systematic approach to boundary conditions that break bulk symmetries. It is based on the construction, by `alpha-induction, of a fusion ring for the boundary fields. Its structure constants are the annulus coefficients and its 6j-symbols give the OPE of boundary fields. Symmetry breaking boundary conditions correspond to solitonic sectors.
Topological field theory in three dimensions provides a powerful tool to construct correlation functions and to describe boundary conditions in two-dimensional conformal field theories.
This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvatu
Boundary conditions and defects of any codimension are natural parts of any quantum field theory. Surface defects in three-dimensional topological field theories of Turaev-Reshetikhin type have applications to two-dimensional conformal field theories
Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric me
We study properties of the category of modules of an algebra object A in a tensor category C. We show that the module category inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a by-prod