ترغب بنشر مسار تعليمي؟ اضغط هنا

$J/psi$ Photoproduction and the Gluon Structure of the Nucleon

321   0   0.0 ( 0 )
 نشر من قبل Helmut Satz
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using short distance QCD methods based on the operator product expansion, we calculate the $J/psi$ photoproduction cross section in terms of the gluon distribution function of the nucleon. Comparing the result with data, we show that experimental behaviour of the cross section correctly reflects the $x$-dependence of the gluon distribution obtained from deep inelastic scattering.



قيم البحث

اقرأ أيضاً

100 - J.P.Ma , J.S. Xu 2001
We study diffractive photoproduction of $J/psi$ by taking the charm quark as a heavy quark. A description of nonperturbative effect related to $J/psi$ can be made by using NRQCD. In the forward region of the kinematics, the interaction between the $c bar c$-pair and the initial hadron is due to exchange of soft gluons. The effect of the exchange can be studied by using the expansion in the inverse of the quark mass $m_c$. At the leading order we find that the nonperturbative effect related to the initial hadron is represented by a matrix element of field strength operators, which are separated in the moving direction of $J/psi$ in the space-time. The S-matrix element is then obtained without using perturbative QCD and the results are not based on any model. Corrections to the results can be systematically added. Keeping the dominant contribution of the S-matrix element in the large energy limit we find that the imaginary part of the S-matrix element is related to the gluon distribution for $xto 0$ with a reasonable assumption, the real part can be obtained with another approximation or with dispersion relation. Our approach is different than previous approaches and also our results are different than those in these approaches. The differences are discussed in detail. A comparison with experiment is also made and a qualitative agreement is found.
The near-threshold photoproduction of $J/psi$ is regarded as one golden process to unveil the nucleon mass structure, pentaquark state involving the charm quarks, and the poorly constrained gluon distribution of the nucleon at large $x$ ($>0.1$). In this paper, we present an analysis of the current experimental data under a two-gluon exchange model, which shows a good consistency. Using a parameterized function form with three free parameters, we have determined the nucleonic gluon distribution at the $J/psi$ mass scale. Moreover, we predict the differential cross section of the electroproduction of $J/psi$ as a function of the invariant mass of the final hadrons $W$, at EicC, as a practical application of the model and the obtained gluon distribution. According to our estimation, thousands of $J/psi$ events can be detected per year on EicC near the threshold. Therefore, the relevant experimental measurements are suggested to be carried out on EicC.
We have developed a model in which the quantum fluctuations of the proton structure are characterised by hot spots, whose number grows with decreasing Bjorken-$x$. Our model reproduces the $F_2(x,Q^2)$ data from HERA at the relevant scale, as well as the exclusive and dissociative $mathrm{J/}psi$ photoproduction data from H1 and ALICE. Our model predicts that for $W_{gammamathrm{p}} approx 500$ GeV, the dissociative $mathrm{J/}psi$ cross section reaches a maximum and then decreases steeply with energy, which is in qualitatively good agreement to a recent observation that the dissociative $mathrm{J/}psi$ background in the exclusive $mathrm{J/}psi$ sample measured in photoproduction by ALICE decreases as energy increases. Our prediction provides a clear signature for gluon saturation at LHC energies.
191 - H. G. Dosch , E. Ferreira 2002
We present a nonperturbative QCD calculation of elastic $J/psi$ meson production in photon-proton scattering at high energies. Using light cone wave functions of the photon and vector mesons, and the framework of the model of the stochastic QCD vacuu m, we calculate the differential and integrated elastic cross sections for $gamma p goto J/psi p $ . With an energy dependence following the two-pomeron model we are able to give a consistent description of the integrated cross sections and the differential cross sections at low $|t|$ in the range from 20 GeV up to the highest HERA energies. We discuss different approaches to introduce saturation and find no specific effects up to energies presently available. We also calculate and compare to experiments the cross section for $upsilon$ photoproduction.
Using a nonrelativistic potential model, we calculate the cross section for the leading-order gluon dissociation of J/psi by including the full gluon wave function. We find that the resulting cross section as a function of gluon energy is reduced by about a factor of three at its maximum value compared to that calculated in the dipole approximation that is usually adopted in theoretical studies. The effect of the reduced cross section on the J/psi dissociation width at finite temperature is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا