ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying Lepton Family Violation in Lepton-Lepton Collisions

64   0   0.0 ( 0 )
 نشر من قبل Yury F. Pirogov
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of the future high energy - high luminosity electron and muon colliders, all the relevant four-lepton processes with the lepton family violation (LFV) are systematically classified. The most general LFV effective lagrangians are found, and the helicity differential cross sections for the LFV processes are calculated. The six- and eight-lepton Standard Model (SM) backgrounds are discussed, and the LFV processes clean of the six-lepton background are picked out. The possibility to suppress the six-lepton SM background, when present, by the unnatural initial beam polarizations is investigated. It is shown that the four-lepton LFV processes are amenable to experimental study in the lepton-lepton collisions in the most favourable cases up to the underlying scale of order 100 TeV. Studying these processes should provide an essential part of the physics program for the next generation lepton colliders to unravel the outstanding flavour/family problem.



قيم البحث

اقرأ أيضاً

We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from t he type I + type II seesaw mechanism. We studied the new physics contributions to NDBD coming from the left-right gauge boson mixing and the heavy neutrino contribution within the framework of LRSM. We have considered the mass of the RH gauge boson to be specifically 5 TeV, 10 TeV and 18 TeV and studied the effects of the new physics contributions on the effective mass and baryogenesis and compared with the current experimental limit. We tried to correlate the cosmological BAU from resonant leptogenesis with the low energy observables, notably, NDBD and LFV with a view to finding a common parameter space where they coexists.
Flavor symmetric model is one of the attractive Beyond Standard Models (BSMs) to reveal the flavor structure of the Standard Model (SM). A lot of efforts have been put into the model building and we find many kinds of flavor symmetries and setups are able to explain the observed fermion mass matrices. In this paper, we look for common predictions of physical observables among the ones in flavor symmetric models, and try to understand how to test flavor symmetry in experiments. Especially, we focus on the BSMs for leptons with extra Higgs $SU(2)_L$ doublets charged under flavor symmetry. In many flavor models for leptons, remnant symmetry is partially respected after the flavor symmetry breaking, and it controls well the Flavor Changing Neutral Currents (FCNCs) and suggests some crucial predictions against the flavor changing process, although the remnant symmetry is not respected in the full lagrangian. In fact, we see that $tau^- to e^+ mu^- mu^-$ $( mu^+ e^- e^-)$ and $e^+ e^- to tau^+tau^-$ $(mu^-mu^+)$ processes are the most important in the flavor models that the extra Higgs doublets belong to triplet representation of flavor symmetry. For instance, the stringent constraint from the $mu to e gamma$ process could be evaded according to the partial remnant symmetry. We also investigate the breaking effect of the remnant symmetry mediated by the Higgs scalars, and investigate the constraints from the flavor physics: the flavor violating $tau$ and $mu$ decays, the electric dipole moments, and the muon anomalous magnetic moment. We also discuss the correlation between FCNCs and nonzero $theta_{13}$, and point out the physical observables in the charged lepton sector to test the BSMs for the neutrino mixing.
MadGraph5_aMC@NLO is a software package that allows one to simulate processes of arbitrary complexity, at both the leading and the next-to-leading order perturbative accuracy, with or without matching and multi-jet merging to parton showers. It has b een designed for, and so far primarily employed in the context of, hadronic collisions. In this note, we document the implementation of a few technical features that are necessary to extend its scope to realistic ee collider environments. We limit ourselves to discussing the unpolarized beam case, but we point out that the treatment of polarized beams is conceptually identical, and that the structure we set up can easily be extended to carry out simulations at muon colliders.
We report on our study of the LFV processes mu to egamma, muto eee and mu to e conversion in the context of Little Higgs models. Specifically we examine the Littlest Higgs with T-parity (LHT) and the Simplest Little Higgs (SLH) as examples of a Produ ct group and Simple group Little Higgs models respectively. The necessary Feynman rules for both models are obtained in the t Hooft Feynman Gauge up to order v^2/f^2 and predictions for the branching ratios and conversion rates of the LFV processes are calculated to leading order (one-loop level). Comparison with current experimental constraints show that there is some tension and, in order to be within the limits, one requires a higher breaking scale f, alignment of the heavy and light lepton sectors or almost degenerate heavy lepton masses. These constraints are more demanding in the SLH than in the LHT case.
Lepton flavour violation (LFV) naturally occurs in many new physics models, specifically in those explaining the $B$ anomalies. While LFV has already been studied for mesonic decays, it is important to consider also baryonic decays mediated by the sa me quark transition. In this paper, we study LFV in the baryonic $Lambda_b to Lambda ell_1 ell_2$ using for the first time a full basis of New Physics operators. We present expected bounds on the branching ratio in a model-independent framework and using two specific new physics models. Finally, we point out the interplay and orthogonality between the baryonic and mesonic LFV searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا