ﻻ يوجد ملخص باللغة العربية
We are presenting here the new formulae for Bose-Einstein correlations (BEC) which contain effects of final state interactions (FSI) of both strong (in $s$-wave) and electromagnetic origin. We demonstrate the importance of FSI in BEC by analysing data for $e^+e^-$ annihilation and for heavy collisions. The inclusion of FSI results in the practical elimination (at least in $e^+e^-$ data) of the so called degree of coherence parameter $lambda$ (which becomes equal unity) and the long range parameter $gamma$ (which is now equal zero).
Recently DELPHI Collaboration reported new data on Bose-Einstein correlations (BEC) measured in e+e- -> W^+W^- events. Apparently no enhancement has been observed. We have analyzed these data including final state interactions (FSI) of both Coulomb a
We applied an analytical formula for Bose-Einstein correlations (BEC) developed by us recently to high-energy heavy ion collisions, in particular to data on S+Pb$topi^+$-$pi^+$+X reaction at energy $200$ GeV/nucleon reported by the NA44 Collaboration
We present an analytical formula for the Bose-Einstein correlations (BEC) which includes effects of both Coulomb and strong final stateinteractions (FSI). It was obtained by using Coulomb wave function together with the scattering partial wave amplit
We describe an attempt to numerically model Bose-Einstein correlations (BEC) from within, i.e., by using them as the most fundamental ingredient of a Monte Carlo event generator (MC) rather than considering them as a kind of (more or less important,
We show that the large corrections due to final state interactions (FSI) in the D^+to pi^-pi^+pi^+, D^+_sto pi^-pi^+pi^+, and D^+to K^-pi^+pi^+ decays can be accounted for by invoking scattering amplitudes in agreement with those derived from phase s