ﻻ يوجد ملخص باللغة العربية
We investigate the consistency requirements of the next-to leading BFKL equation with the renormalization group, with particular emphasis on running coupling effects and NL anomalous dimensions. We show that, despite some model dependence of the bare hard Pomeron, such consistency holds at leading twist level, provided the effective variable $alpha_s(t) log(1/x)$ is not too large. We give a unified view of resummation formulas for coefficient functions and anomalous dimensions in the Q_0-scheme and we discuss in detail the new one for the $qbar{q}$ contributions to the gluon channel.
By using $k$-factorization, we derive resummation formulas for the non-abelian $qbar{q}$ contributions to both heavy flavour production by gluon fusion, and to the next-to-leading BFKL kernel. By combining this result with previous ones by Fadin et a
The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region $sgg Q^2gg q_perp^2$ corresponding to recent LHC experiments with $Q^2$ of order of mass of Z-boson and transverse momentum of DY pair $sim$ few tens GeV. Th
The Drell-Yan hadronic tensor for electromagnetic (EM) current is calculated in the Sudakov region $sgg Q^2gg q_perp^2$ with ${1over Q^2}$ accuracy, first at the tree level and then with the double-log accuracy. It is demonstrated that in the leading
We study the production of forward di-jets in proton-lead and proton-proton collisions at the Large Hadron Collider. Such configurations, with both jets produced in the forward direction, impose a dilute-dense asymmetry which allows to probe the gluo
Recently, a scenario has been proposed in which the gravitational scale could be as low as the TeV scale, and extra dimensions could be large and detectable at the electroweak scale. Although supersymmetry is not a requirement of this scenario, it is