ﻻ يوجد ملخص باللغة العربية
The effective action describing the long range fluctuations in the high temperature phase of the electroweak standard theory is a strongly coupled SU(2)-Higgs-model in three dimensions. We outline in detail a model in which the spatial correlation scales in this phase are calculated as inverse relativistic bound state masses. Selection rules for these states are derived. The correlation masses are calculated by evaluating the bound state Greens function. The scalar-scalar-potential and its influence on the masses is investigated. The predictions for the correlation masses agree very well with the lattice data available now.
The high temperature phase of the electroweak standard theory is described by a strongly coupled SU(2)-Higgs-model in three dimensions. As in the Abbott-Farhi-model Higgs and W-boson are low lying bound states. Using a method by Simonov based on the
We establish the non-perturbative validity of the gauge anomaly cancellation condition in an effective electroweak theory of massless fermions with finite momentum cut-off and Fermi interaction. The requirement that the current is conserved up to ter
We perform a non-perturbative chiral study of the masses of the lightest pseudoscalar mesons. In the calculation of the self-energies we employ the S-wave meson-meson amplitudes taken from Unitary Chiral Perturbation Theory (UCHPT) that include the l
We revisit a recently proposed scale invariant extension of the standard model, in which the scalar bi-linear condensate in a strongly interacting hidden sector dynamically breaks scale symmetry, thereby triggering electroweak symmetry breaking. Rela
Higgs sector extensions beyond the Standard Model (BSM) provide additional sources of CP violation and further scalar states that help to trigger a strong first order electroweak phase transition (SFOEWPT) required to generate the observed baryon asy