We discuss the impact of the planned upgrades of the HERA collider on the study of open heavy flavour and quarkonium production. New experimental techniques in charm physics are presented.
Recent results from the experiments ZEUS and H1 on charm production in $ep$ collisions are reviewed. The topics are elastic and inelastic $J/psi$ photoproduction, $D^*$ photoproduction differential cross sections and a first look at the proton structure function F_2^{cbar{c}}.
We present hadron-level predictions from the Monte Carlo generator Cascade and numerical calculations of charm and beauty production at the Fermilab Tevatron within the framework of the $k_T$-factorization QCD approach. Our consideration is based on
the CCFM-evolved unintegrated gluon densities in a proton. The performed analysis covers the total and differential cross sections of open charm and beauty quarks, $B$ and $D$ mesons (or rather muons from their semileptonic decays) and the total and differential cross sections of $b bar b$ di-jet hadroproduction. We study the theoretical uncertainties of our calculations and investigate the effects coming from parton showers in initial and final states. Our predictions are compared with the recent experimental data taken by the D0 and CDF collaborations. Special attention is put on the specific angular correlations between the final-state particles. We demonstrate that the final state parton shower plays a crucial role in the description of such observables. The decorrelated part of angular separations can be fully described, if the process $gg^*rightarrow gg$ is included.
We review the hadro-production data presently available on open charm and beauty absolute production cross-sections, collected by experiments at CERN, DESY and Fermilab. The published charm production cross-section values are updated, in particular f
or the time evolution of the branching ratios. These measurements are compared to LO pQCD calculations, as a function of the collision energy, using recent parametrisations of the parton distribution functions. We then estimate, including nuclear effects of the parton densities, the charm and beauty production cross-sections relevant for measurements at SPS and RHIC energies, in proton-proton, proton-nucleus and nucleus-nucleus collisions. The calculations are also compared with measurements of single D and B kinematical distributions, and DDbar pair correlations. We finish with two brief comments, concerning the importance of beauty production as a feed-down source of J/psi production, and open charm measurements performed using leptonic decays.
In the asymptotic limit $Q^2 gg m^2$, the non-power corrections to the heavy flavour Wilson coefficients in deep--inelastic scattering are given in terms of massless Wilson coeffcients and massive operator matrix elements. We start extending the exis
ting NLO calculation for these operator matrix elements by calculating the O($epsilon$) terms of the two--loop expressions and having first investigations into the three--loop diagrams needed to O($alpha_s^3$).
The ALICE experiment, currently in the commissioning phase, will study nucleus-nucleus and proton-proton collisions at the CERN Large Hadron Collider (LHC). We review the ALICE heavy-flavour physics program and present a selection of results on the e
xpected performance for the case of proton-proton collisions.