ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry breaking and electroweak physics at Photon Linear Colliders

95   0   0.0 ( 0 )
 نشر من قبل Genevieve Belanger
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English
 تأليف G. Belanger




اسأل ChatGPT حول البحث

The physics potential of a high-energy photon collider is reviewed. The emphasis is put on aspects related to the symmetry breaking sector, including Higgs searches and production of longitudinal vector bosons.



قيم البحث

اقرأ أيضاً

In this review, we discuss methods of parsing direct and indirect information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model p redictions in pertinent parameter spaces. Ultimately these methods are used to constrain a five-dimensional parameter space describing a model-independent framework for electroweak symmetry breaking. We review prevalent scenarios for extending the electroweak symmetry breaking sector relative to the Standard Model and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in LHC data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts, highlighting some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.
51 - K. Hencken 1999
Due to the coherence of all the protons in a nucleus, there are very strong electromagnetic fields of short duration in relativistic heavy ion collisions. They give rise to quasireal photon-photon and photon-nucleus collisions with a large flux. RHIC will begin its experimental program this year and such types of collisions will be studied experimentally at the STAR detector. RHIC will have the highest flux of (quasireal) photons up to now in the GeV region. At the LHC the invariant mass range available in gamma-gamma-interactions will be of the order of 100 GeV, i.e., in the range currently available at LEP2, but with a higher gamma-gamma-luminosity. Therefore one has there also the potential to study new physics. (Quasireal) photon-hadron (i.e., photon-nucleus) interactions can be studied as well, similar to HERA, at higher invariant masses. Vector mesons can be produced coherently through photon-Pomeron and photon-meson interactions in exclusive reactions such as A+A -> A+A+V, where A is the heavy ion and V=rho,omega,phi or J/Psi.
We review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. We emphasize the direct observation of the new interactions through high-energy scatterin g of vector bosons. We also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models. [Working group summary report from the Snowmass `96 summer study, to appear in the proceedings.]
In this paper we study a new class of supersymmetric models that can explain a 125 GeV Higgs without fine-tuning. These models contain additional `auxiliary Higgs fields with large tree-level quartic interaction terms but no Yukawa couplings. These h ave electroweak-breaking vacuum expectation values, and contribute to the VEVs of the MSSM Higgs fields either through an induced quartic or through an induced tadpole. The quartic interactions for the auxiliary Higgs fields can arise from either D-terms or F-terms. The tadpole mechanism has been previously studied in strongly-coupled models with large D-terms, referred to as `superconformal technicolor. The perturbative models studied here preserve gauge coupling unification in the simplest possible way, namely that all new fields are in complete SU(5) multiplets. The models are consistent with the observed properties of the 125 GeV Higgs-like boson as well as precision electroweak constraints, and predict a rich phenomenology of new Higgs states at the weak scale. The tuning is less than 10% in almost all of the phenomenologically allowed parameter space. If electroweak symmetry is broken by an induced tadpole, the cubic and quartic Higgs self-couplings are significantly smaller than in the standard model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا