ترغب بنشر مسار تعليمي؟ اضغط هنا

The Determination of $alpha_S$ at Hadron Colliders

79   0   0.0 ( 0 )
 نشر من قبل Walter T. Giele
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Hadron colliders offer a unique opportunity to test perturbative QCD because, rather than producing events at a specific beam energy, the dynamics of the hard scattering is probed simultaneously at a wide range of momentum transfers. This makes the determination of $al$ and the parton density functions (PDF) at hadron colliders particularly interesting. In this paper we restrict ourselves to extracting $al$ for a given PDF at a scale which is directly related to the transverse energy produced in the collision. As an example, we focus on the single jet inclusive transverse energy distribution and use the published 88-89 CDF data with an integrated luminosity of 4.2 pb$^{-1}$. The evolution of the coupling constant over a wide range of scales (from 30~GeV to 500~GeV) is clearly shown and is in agreement with the QCD expectation. The data to be obtained in the current Tevatron run (expected to be well in excess 100 pb$^{-1}$ for both the CDF and DO experiments) will significantly decrease the experimental errors.



قيم البحث

اقرأ أيضاً

We propose an improved method for hadron-collider mass determination of new states that decay to a massive, long-lived state like the LSP in the MSSM. We focus on pair produced new states which undergo three-body decay to a pair of visible particles and the new invisible long-lived state. Our approach is to construct a kinematic quantity which enforces all known physical constraints on the system. The distribution of this quantity calculated for the observed events has an endpoint that determines the mass of the new states. However we find it much more efficient to determine the masses by fitting to the entire distribution and not just the end point. We consider the application of the method at the LHC for various models and demonstrate that the method can determine the masses within about 6 GeV using only 250 events. This implies the method is viable even for relatively rare processes at the LHC such as neutralino pair production.
The impact of higher-order final-state photonic corrections on the precise determination of the W-boson mass at the Tevatron and LHC colliders is evaluated. The W-mass shift from a fit to the transverse mass distribution is found to be about 10 MeV i n the W --> mu nu channel and a few MeV in the W --> e nu channel. The calculation, which is implemented in the Monte Carlo event generator HORACE for data analysis, can contribute to reduce the uncertainty associated to the W mass measurement at present and future hadron collider experiments.
73 - B. Dion , T. Gregoire , D. London 1998
We examine, as model-independently as possible, the production of bileptons at hadron colliders. When a particular model is necessary or useful, we choose the 3-3-1 model. We consider a variety of processes: q anti-q -> Y^{++} Y^{--}, u anti-d -> Y^{ ++} Y^{-}, anti-u d -> Y^+ Y^{--}, q anti-q -> Y^{++} e^{-} e^{-}, q anti-q -> phi^{++} phi^{--}, u anti-d -> -> phi^{++} phi^{-}, and anti-u d -> phi^{+} phi^{--}, where Y and phi are vector and scalar bileptons, respectively. Given the present low-energy constraints, we find that at the Tevatron, vector bileptons are unobservable, while light scalar bileptons (M_phi <= 300 GeV) are just barely observable. At the LHC, the reach is extended considerably: vector bileptons of mass M_Y <= 1 TeV are observable, as are scalar bileptons of mass M_phi <= 850 GeV.
75 - D. Yu. Bogachev 2005
Uncertainties of the MSSM predictions are due to an unknown SUSY breaking mechanism. To reduce these uncertainties, one usually imposes constraints on the MSSM parameter space. Recently, two new constraints became available, both from astrophysics: W MAP precise measurement of the amount of the Dark Matter in the Universe and EGRET data on an excess in diffuse gamma ray flux. Being interpreted as a manifestation of supersymmetry these data lead to severe constraints on parameter space and single out a very restricted area. The key feature of this area is the splitting of light gauginos from heavy squarks and sleptons. We study the phenomenological properties of this scenario, in particular, the cross-sections of superparticle production, their decay patterns and signatures for observation at hadron colliders, Tevatron and LHC. We found that weakly interacting particles in this area are very light so that the cross-sections may reach fractions of a pb with jets and/or leptons as final states accompanied by missing energy taken away by light neutralino with a mass around 100 GeV.
We present a method to compute off-shell effects for processes involving resonant particles at hadron colliders with the possibility to include realistic cuts on the decay products. The method is based on an effective theory approach to unstable part icle production and, as an example, is applied to t-channel single top production at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا