ﻻ يوجد ملخص باللغة العربية
I discuss the interplay of infrared sensitivity in large order perturbative expansions with the presence of explicit nonperturbative corrections in the context of heavy quark expansions. The main focus is on inclusive decays and the status of the kinetic energy of the heavy quark. This talk summarizes work done with Braun and Zakharov.
The complete renormalization of the weak Lagrangian to chiral order q^2 in heavy baryon chiral perturbation theory is performed using heat kernel techniques. The results are compared with divergences appearing in the calculation of Feynman graphs for
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the lig
We construct a leading-order effective field theory for both scalar and axial-vector heavy diquarks, and consider its power expansion in the heavy diquark limit. By assuming the transition from QCD to diquark effective theory, we derive the most gene
We discuss a possible generation of color suppressed B-decays amplitudes through a soft final state interaction. As a typical example, we consider in detail the decay $ bar{B}^{0} rightarrow D^{0} pi^{0} $ (and also $ bar{B}^{0} rightarrow 2 pi^{0} $
Bethe-Salpeter approach has been applied to the study of b --> c transitions both for heavy mesons and heavy baryons. Meson and baryon IW functions are calculated on the equal footing. A reasonable agreement with the experimental data for heavy to heavy semileptonic transitions has been obtained.