ﻻ يوجد ملخص باللغة العربية
We study the effects induced by new neutral fermions below their mass threshold, due to their possible mixing with the standard neutrinos. We use as experimental constraints the recent results on lepton universality, together with the measurement of the $mu$ decay rate and the updated LEP data. In particular, the inclusion in our data set of the most recent determinations of the $tau$ branching fractions, mass and lifetime implies that a previous indication of a non-vanishing mixing for $ u_tau$ is no longer present. We obtain new stringent limits on the mixing parameters between $ u_e$, $ u_mu$, $ u_tau$ and heavy neutral states of different weak isospin. If no assumption on the type of neutrinos involved in the mixing is made, we find $snue^2<0.0071$, $snumu^2<0.0014$ and $snutau^2<0.033$.
If heavy neutrinos with mass $m_{ u_{H}}geq$2$ m_e $ are produced in the Sun via the decay ${^8rm{B}} rightarrow {^8rm{Be}} + e^+ + u_H$ in a side branch of pp-chain, they would undergo the observable decay into an electron, a positron and a light n
Here we give a brief review on the current bounds on the general Majorana transition neutrino magnetic moments (TNMM) which cover also the conventional neutrino magnetic moments (NMM). Leptonic CP phases play a key role in constraining TNMMs. While t
We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV$^2$-scale mass splitting and for oscillations into sterile neutrinos
Upper limits on neutrino masses from cosmology have been reported recently to reach the impressive sub-eV level, which is competitive with future terrestrial neutrino experiments. In this brief overview of the latest limits from cosmology I point out
Several cosmologically distant astrophysical sources may produce high-energy cosmic neutrinos (E geq 10^6 GeV) of all flavors above the atmospheric neutrino background. We study the effects of vacuum neutrino mixing in three flavor framework on this