ﻻ يوجد ملخص باللغة العربية
We address the problem of observed charmonium decays which should be forbidden in perturbative QCD. We examine the model in which these decays proceed through a gluonic component of the $J/Psi$ and the $eta_c$, arising from a mixing of $(cbar c)$ and glueball states. We give some bounds on the values of the mixing angles and propose the study of the $p bar{p} to phi phi$ reaction, at $sqrt{s} simeq 3$ GeV, as an independent test of the model.
We extend the formalism based on perturbative QCD that was developed in our previous work, and compute the hyperfine splittings of the bottomonium spectrum as well as the fine and hyperfine splittings of the charmonium spectrum. All the corrections u
We calculate the next-to-leading order (NLO) quantum chromodynamics (QCD) corrections to inclusive processes $W^+to J/psi(eta_c)+c+bar{s}+X$ and $W^+to B_c(B_c^{*})+b+bar{s}+X$ in the framework of nonrelativistic QCD (NRQCD) factorization formalism.
Although the spectra of heavy quarkonium systems has been successfully explained by certain QCD motivated potential models, their strong decays are difficult to deal with. We perform a microscopic calculation of charmonium strong decays using the sam
The Bc --> J/psi pi, etac pi decays are studied with the perturbative QCD approach. It is found that form factors and branching ratios are sensitive to the parameters w, v, f_J/psi and f_etac, where w and v are the parameters of the charmonium wave f
In this work, we provide estimates of the branching ratios, direct $CP$ asymmetries and triple product asymmetries in $B_{(s)} to (pipi)(Kpi)$ decays in the perturbative QCD approach, where the $pipi$ and $Kpi$ invariant mass spectra are dominated by