ﻻ يوجد ملخص باللغة العربية
Most sparticle decay cascades envisaged at the Large Hadron Collider (LHC) involve hadronic decays of intermediate particles. We use state-of-the art techniques based on the kt jet algorithm to reconstruct the resulting hadronic final states for simulated LHC events in a number of benchmark supersymmetric scenarios. In particular, we show that a general method of selecting preferentially boosted massive particles such as W, Z or Higgs bosons decaying to jets, using sub-jets found by the kt algorithm, suppresses QCD backgrounds and thereby enhances the observability of signals that would otherwise be indistinct. Consequently, measurements of the supersymmetric mass spectrum at the per-cent level can be obtained from cascades including the hadronic decays of such massive intermediate bosons.
We present our work on reconstructing sparticle masses in purely hadronic decay chains, using the $k_T$ jet-algorithm on Monte Carlo simulated events at LHC energies.
We show that the large corrections due to final state interactions (FSI) in the D^+to pi^-pi^+pi^+, D^+_sto pi^-pi^+pi^+, and D^+to K^-pi^+pi^+ decays can be accounted for by invoking scattering amplitudes in agreement with those derived from phase s
We study the radiative (E1 and M1) decays of P-wave quarkonia in a strong magnetic field based on the Lagrangian of potential nonrelativistic QCD. To investigate their properties, we implement a polarized wave function basis justified in the Paschen-
The Quantum Chromodynamics (QCD) coupling, $alpha_s$, is not a physical observable of the theory since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by $hatalpha_s$, whose r
We describe a major extension of the SOFTSUSY spectrum calculator to include the calculation of the decays, branching ratios and lifetimes of sparticles into lighter sparticles, covering the next-to-minimal supersymmetric standard model (NMSSM) as we