ﻻ يوجد ملخص باللغة العربية
In the context of the minimal supersymmetric seesaw model, the CP-violating neutrino Yukawa couplings might induce an electron EDM. The same interactions may also be responsible for the generation of the observed baryon asymmetry of the Universe via leptogenesis. We identify in a model-independent way those patterns within the seesaw models which predict an electron EDM at a level probed by planned laboratory experiments and show that negative searches on tau-> e gamma decay may provide the strongest upper bound on the electron EDM. We also conclude that a possible future detection of the electron EDM is incompatible with thermal leptogenesis, even when flavour effects are accounted for.
The ACME collaboration has recently announced a new constraint on the electron EDM, $|d_e| < 1.1 times 10^{-29}, e, {rm cm}$, from measurements of the ThO molecule. This is a powerful constraint on CP-violating new physics: even new physics generatin
All current experiments searching for an electron EDM d_e are performed with atoms and diatomic molecules. Motivated by significant recent progress in searches for an EDM-type signal in diatomic molecules with an uncompensated electron spin, we provi
We present the first complete two loop calculation of the electron EDM in the complex two-Higgs doublet model. We confirm gauge-independence by demonstrating analytic cancellation of the gauge parameter $xi$ in the background field gauge and the t Ho
The minimal supersymmetric standard model (MSSM) with complex parameters can contribute sizably to muon/electron anomalous magnetic dipole momemnt ($g-2$) and electric dipole moment (EDM). The electron $g-2$ interplays with electron EDM; the muon $g-
The CP violating two-Higgs doublet model of type-X may enhance significantly the electric and magnetic moment of leptons through two-loop Barr-Zee diagrams. We analyze the general parameter space of the type-X 2HDM consistent with the muon $g-2$ and