ﻻ يوجد ملخص باللغة العربية
The evaluation of the hadronic contribution to the muon magnetic anomaly $a_mu$ is revisited, taking advantage of new experimental data on $e^+e^-$ annihilation into hadrons: SND and CMD-2 for the $pi^+pi^-$ channel, and babar for multihadron final states. Discrepancies are observed between KLOE and CMD-2/SND data, preventing one from averaging all the $e^+e^-$ results. The long-standing disagreement between spectral functions obtained from $tau$ decays and $e^+e^-$ annihilation is still present, and not accounted by isospin-breaking corrections, for which new estimates have been presented. The updated Standard Model value for $a_mu$ based on $e^+e^-$ annihilation data is now reaching a precision better than experiment, and it disagrees with the direct measurement from BNL at the 3.3$sigma$ level, while the $tau$-based estimate is in much better agreement. The $tau$/$e^+e^-$ discrepancy, best revealed when comparing the measured branching fraction for $tau^- to pi^- pi^0 u_tau$ to its prediction from the isospin-breaking-corrected $e^+e^-$ spectral function, remains a serious problem to be understood.
The leading order hadronic contribution to the muon magnetic moment anomaly, $a^{HAD}_mu$, is determined entirely in the framework of QCD. The result in the light-quark sector, in units of $10^{-10}$, is $a^{HAD}_mu|_{uds} =686 pm 26$, and in the hea
Precise data on e^+e^- to hadrons have recently become available and are used to compute the lowest-order hadronic vacuum polarisation contribution to the muon magnetic anomaly through dispersion relations. This is the case for the dominant pi+ pi- c
We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contributi
We reanalyze the two-loop electroweak hadronic contributions to the muon g-2 that may be enhanced by large logarithms. The present evaluation is improved over those already existing in the literature by the implementation of the current algebra Ward
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_mu^{mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum pol