ﻻ يوجد ملخص باللغة العربية
We calculate the azimuthal dependence of the heavy-quark-initiated ${cal O}(alpha_{s})$ contributions to the lepton-nucleon deep inelastic scattering (DIS). It is shown that, contrary to the photon-gluon fusion (GF) component, the photon-quark scattering (QS) mechanism is practically $cos2phi$-independent. We investigate the possibility to discriminate experimentally between the GF and QS contributions using their strongly different azimuthal distributions. Our analysis shows that the GF and QS predictions for the azimuthal $cos2phi$ asymmetry are quantitatively well defined in the fixed flavor number scheme: they are stable, both parametrically and perturbatively. We conclude that measurements of the azimuthal distributions at large Bjorken $x$ could directly probe the intrinsic charm content of the proton. As to the variable flavor number schemes, the charm densities of the recent CTEQ and MRST sets of parton distributions have a dramatic impact on the $cos2phi$ asymmetry in the whole region of $x$ and, for this reason, can easily be measured.
We study two experimental ways to measure the heavy-quark content of the proton: using the Callan-Gross ratio $R(x,Q^2)=F_L/F_T$ and/or azimuthal $cos(2varphi)$ asymmetry in deep inelastic lepton-nucleon scattering. Our approach is based on the pertu
Constraints on the intrinsic charm probability $wccm = P_{{mathrm{c}bar mathrm{c}} / mathrm{p}}$ in the proton are obtained for the first time from LHC measurements. The ATLAS Collaboration data for the production of prompt photons, accompanied by a
The cross section of associated production of a Z boson with heavy flavor jets in $pp$ collisions is calculated using the SHERPA Monte Carlo generator and the analytical combined QCD approach based on kt-factorization at small x and conventional coll
Despite rather long-term theoretical and experimental studies, the hypothesis of the non-zero intrinsic (or valence-like) heavy quark component of the proton distribution functions has not yet been confirmed or rejected. The LHC with $pp$-collisions
We consider possible mechanisms for single spin asymmetries in inclusive Deep Inelastic Scattering (DIS) processes with unpolarized leptons and transversely polarized nucleons. Tests for the effects of non-zero $bfk_perp$, for the properties of spin