ﻻ يوجد ملخص باللغة العربية
Singlet Higgs bosons present in extensions of the MSSM can have sizable Yukawa couplings to the b quark and the tau lepton for large values of tan(beta) at the 1-loop level. We present an effective Lagrangian which incorporates these tan(beta)-enhanced Yukawa couplings and which enables us to study their effect on singlet Higgs-boson phenomenology within the context of both the mnSSM and the NMSSM. In particular, we find that the loop-induced coupling can be a significant effect for the singlet pseudoscalar, and may dominate its decay modes. Further implications of the tan(beta)-enhanced Yukawa couplings for the phenomenology of the singlet Higgs bosons are briefly discussed.
Extensions of the MSSM generically feature gauge singlet Higgs bosons. These singlet Higgs bosons have tan(beta)-enhanced Yukawa couplings to down-type quarks and leptons at the one-loop level. We present an effective Lagrangian incorporating these Y
We consider tan(beta)-enhanced quantum effects in the minimal supersymmetric standard model (MSSM) including those from the Higgs sector. To this end, we match the MSSM to an effective two-Higgs doublet model (2HDM), assuming that all SUSY particles
Higgs singlet superfields are usually present in most extensions of the Minimal Supersymmetric Standard Model (MSSM) that address the mu-problem, such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the Minimal Nonminimal Supersymmet
We point out that, contrary to general belief, generic supersymmetric models are not technically unnatural in the limit of very large values of the parameter tan(beta) when radiative corrections are properly included. Rather, an upper limit on tan(be
We study two Higgs models for large $tanbeta$ and relatively large second Higgs mass. In this limit the second heavy Higgs should have small vev and therefore couples only weakly to two gauge bosons. Furthermore, the couplings to down type quarks can