We study elastic pion-pion scattering in global linear moose models and apply the results to a variety of Higgsless models in flat and AdS space using the Equivalence Theorem. In order to connect the global moose to Higgsless models, we first introduce a block-spin transformation which corresponds, in the continuum, to the freedom to perform coordinate transformations in the Higgsless model. We show that it is possible to make an f-flat deconstruction in which all of the f-constants f_j of the linear moose model are identical; the phenomenologically relevant f-flat models are those in which the coupling constants of the groups at either end of the moose are small - corresponding to the global linear moose. In studying pion-pion scattering, we derive various sum rules, including one analogous to the KSRF relation, and use them in evaluating the low-energy and high-energy forms of the leading elastic partial wave scattering amplitudes. We obtain elastic unitarity bounds as a function of the mass of the lightest KK mode and discuss their physical significance.