ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluidity in many fermion systems: Exact renormalisation group treatment

127   0   0.0 ( 0 )
 نشر من قبل Boris Krippa
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Boris Krippa




اسأل ChatGPT حول البحث

The application of the exact renormalisation group to symmetric as well as asymmetric many-fermion systems with a short-range attractive force is studied. Assuming an ansatz for the effective action with effective bosons, describing pairing effects a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations has been derived. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator are shown to lead to a similar results. We find that, being quite small in the case of the symmetric many-fermion system the corrections to mean field approximation becomes more important with increasing mass asymmetry.



قيم البحث

اقرأ أيضاً

The exact renormalization group methods is applied to many fermion systems with short-range attractive force. The strength of the attractive fermion-fermion interaction is determined from the vacuum scattering length. A set of approximate flow equati ons is derived including fermionic and bosonic fluctuations. The numerical solutions show a phase transition to a gapped phase. The inclusion of bosonic fluctuations is found to be significant only in the small-gap regime.
417 - Boris Krippa 2014
Functional renormalisation group approach is applied to a imbalanced many- fermion system with a short-range attractive force. Composite boson field is introduced to describe the pairing between different flavour fermions. A set of approximate flow e quations for the effective couplings is derived and solved. We identify the critical values of mass and particle number density mismatch when the system undergoes a phase transition to a normal state and determine the phase diagram both at unitary regime and nearby.
211 - Boris Krippa 2005
The application of the exact renormalisation group to a many-fermion system with a short-range attractive force is studied. We assume a simple ansatz for the effective action with effective bosons, describing pairing effects and derive a set of appro ximate flow equations for the effective coupling including boson and fermionic fluctuations. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator was shown to lead to similar results.
129 - Boris Krippa 2006
The application of the nonperturbative renormalisation group approach to a system with two fermion species is studied. Assuming a simple ansatz for the effective action with effective bosons, describing pairing effects we derive a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations. The case of two fermions with different masses but coinciding Fermi surfaces is considered. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The large mass difference is found to disfavour the formation of pairs. The mean-field results are recovered if the effects of boson loops are omitted. While the boson fluctuation effects were found to be negligible for large values of $p_{F} a$ they become increasingly important with decreasing $p_{F} a$ thus making the mean field description less accurate.
416 - J. ODwyer , H. Osborn 2020
The Polchinski version of the exact renormalisation group equations is applied to multicritical fixed points, which are present for dimensions between two and four, for scalar theories using both the local potential approximation and its extension, t he derivative expansion. The results are compared with the epsilon expansion by showing that the non linear differential equations may be linearised at each multicritical point and the epsilon expansion treated as a perturbative expansion. The results for critical exponents are compared with corresponding epsilon expansion results from standard perturbation theory. The results provide a test for the validity of the local potential approximation and also the derivative expansion. An alternative truncation of the exact RG equation leads to equations which are similar to those found in the derivative expansion but which gives correct results for critical exponents to order $epsilon$ and also for the field anomalous dimension to order $epsilon^2$. An exact marginal operator for the full RG equations is also constructed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا