ﻻ يوجد ملخص باللغة العربية
Combining our results for various O(alpha_s^2) corrections to the weak radiative B-meson decay, we are able to present the first estimate of the branching ratio at the next-to-next-to-leading order in QCD. We find BR(B -> X_s gamma) = (3.15 +_ 0.23) x 10^-4 for E_gamma > 1.6 GeV in the B-meson rest frame. The four types of uncertainties: non-perturbative (5%), parametric (3%), higher-order (3%) and m_c-interpolation ambiguity (3%) have been added in quadrature to obtain the total error.
We examine the effects of R-parity violating (RPV) supersymmetry on the two-photon B decays B -> X_s gamma gamma and B_s -> gamma gamma. We find that, although there are many one-loop RPV diagrams that can contribute to these two-photon B decays, the
The logarithmic contributions to the massive twist-2 operator matrix elements for deep-inelastic scattering are calculated to $O(alpha_s^3)$for general values of the Mellin variable $N$.
The B -> X_s l+ l- decay rate is known at the next-to-next-to-leading order in QCD. It is proportional to alpha_em (mu)^2 and has a +- 4% scale uncertainty before including the O(alpha_em log(M_W^2/m_b^2)) electromagnetic corrections. We evaluate the
Precise predictions are provided for the production of a $mathrm{Z}$-boson and a $mathrm{b}$-jet in hadron-hadron collisions within the framework of perturbative QCD, at $mathcal{O}(alpha_s^3)$. To obtain these predictions we perform the first calcul
Using the theoretical and experimental results on $B to X_s gamma$, a four-generation SM is analyzed to constrain the combination of the $4times 4$ Cabibbo-Kobayashi-Maskawa factor $V_{t^prime s}^* V_{t^prime b}$ as a function of the $t^prime$--quark