ﻻ يوجد ملخص باللغة العربية
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard lambda-CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP--allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to lambda-CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.
The flux of cosmic ray antiprotons from neutralino annihilations in the galactic halo is computed for a large sample of models in the MSSM (the Minimal Supersymmetric extension of the Standard Model). We also revisit the problem of estimating the bac
Sterile neutrinos at the eV scale have long been studied in the context of anomalies in short baseline neutrino experiments. Their cosmology can be made compatible with our understanding of the early Universe provided the sterile neutrino sector enjo
Constraining dark matter models necessitates accurate predictions for large set of observables originating from collider physics, cosmology and astrophysics. We consider two classes of top-philic dark matter models where the dark sector is coupled to
We propose the lightest supersymmetric particle (LSP) as a well-suited candidate for superheavy dark matter (SHDM). Various production mechanisms at the end of inflation can produce SHDM with the correct abundance, $Omega_{LSP} h^2 sim 0.1$, if its m
We show that supersymmetric Dark Force models with gravity mediation are viable. To this end, we analyse a simple string-inspired supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge bo