ﻻ يوجد ملخص باللغة العربية
We show that the twist-2 light-cone wave-functions of eta_c and J/psi can be factorized with nonrelativistic QCD(NRQCD) at one-loop level, where the nonperturbative effects are represented by NRQCD matrix elements. The factorization is achieved by expanding the small velocity v, which the c- or bar c- quark moves inside a rest quarkonium with. At leading order of v the twist-2 light-cone wave-functions of eta_c and J/psi can be factorized as the product of a perturbative function and a NRQCD matrix element. The perturbative function is calculated at one-loop level and free from any soft divergence. Our results can be used for the production of J/psieta_c through e^+e^- -annihilation and of a charmonium in B-decays, which are studied in experiment of two B-factories.
We study transverse-momentum-dependent factorization at twist-3 for Drell-Yan processes. The factorization can be derived straightforwardly at leading order of $alpha_s$. But at this order we find that light-cone singularities already exist and effec
The approach of nonrelativistic QCD(NRQCD) factorization was proposed to study inclusive production of a quarkonium. It is widely used and successful. However, a recent study of gluon fragmentation into a quarkonium at two-loop level shows that the f
Predictions for $e^+e^-to J/psi eta_c$ from previous studies are made by taking charmonia as a nonrelativistic bound state and by using nonrelativistic QCD(NRQCD) approach. The predicted cross-section is smaller by an order of magnitude than the expe
We demonstrate that the recently proposed soft gluon factorization (SGF) is equivalent to the nonrelativistic QCD (NRQCD) factorization for heavy quarkonium production or decay, which means that for any given process these two factorization theories
We study exclusive production of scalar $chi_{c0}equiv chi_c(0^{++})$ and pseudoscalar $eta_c$ charmonia states in proton-proton collisions at the LHC energies. The amplitudes for $gg to chi_{c0}$ as well as for $gg to eta_c$ mechanisms are derived i