ﻻ يوجد ملخص باللغة العربية
We explore the influence of the current quark mass on observables in the low energy regime of hadronic interactions within a renormalization group analysis of the Nambu-Jona-Lasinio model in its bosonized form. We derive current quark mass expansions for the pion decay constant and the pion mass, and we recover analytically the universal logarithmic dependence. A numerical solution of the renormalization group flow equations enables us to determine effective low energy constants from the model. We find values consistent with the phenomenological estimates used in chiral perturbation theory.
Our recently developed variant of variationnally optimized perturbation (OPT), in particular consistently incorporating renormalization group properties (RGOPT), is adapted to the calculation of the QCD spectral density of the Dirac operator and the
Can large distance high energy QCD be described by Reggeon Field Theory as an effective emergent theory? We start to investigate the issue employing functional renormalisation group techniques.
The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the renormalization group (RG). In the case of scalar field theory, a precise connection has been made between the gradient flow and the RG flow of the Wilso
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows to describe the effective potential as a function of both scalar field amplitude and
We demonstrate the power of a recently-proposed approximation scheme for the non-perturbative renormalization group that gives access to correlation functions over their full momentum range. We solve numerically the leading-order flow equations obtai