ﻻ يوجد ملخص باللغة العربية
We have performed numerical simulations of the unpolarized e+e- --> p pbar process in kinematic conditions under discussion for a possible upgrade of the existing DAFNE facility. By fitting the cross section angular distribution with a typical Born expression, we can extract information on the ratio |G_E/G_M| of the proton electromagnetic form factors in the timelike region within a 5-10% uncertainty. We have explored also non-Born contributions to the cross section by introducing a further component in the angular fit, which is related to two-photon exchange diagrams. We show that these corrections can be identified if larger than 5% of the Born contribution, and if relative phases of the complex form factors do not produce severe cancellations.
We have performed numerical simulations of the single-polarized e+ e- --> vec p anti p process in kinematic conditions under discussion for a possible upgrade of the existing DAFNE facility. By fitting the cross section and spin asymmetry angular dis
The process of $e^+e^- rightarrow pbar{p}$ is studied at 22 center-of-mass energy points ($sqrt{s}$) from 2.00 to 3.08 GeV, exploiting 688.5~pb$^{-1}$ of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section
Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}rightarrow pbar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic for
The data on the proton form factors in the time-like region from the BaBar, BESIII and CMD-3 Collaborations are examined to have coherent pieces of information on the proton structure. Oscillations in the annihilation cross section, previously observ
Electromagnetic form factors of hyperons ($Lambda$, $Sigma$, $Xi$) in the timelike region, accessible in the reaction $e^+e^- to bar YY$, are studied. The focus is on energies close to the reaction thresholds, where the properties of these form facto