ﻻ يوجد ملخص باللغة العربية
The PVLAS signal has renewed the interest in light bosons coupled to the electromagnetic field. However, astrophysical bounds coming from the lifetime of the sun and the CAST experiment are seemingly in conflict with this result. We discuss effective models that allow to suppress production of axion-like particles in the sun and thereby relax the bounds by some orders of magnitude. This stresses the importance of laboratory searches.
Axion-like particles (ALPs) provide a promising direction in the search for new physics, while a wide range of models incorporate ALPs. We point out that future neutrino experiments, such as DUNE, possess competitive sensitivity to ALP signals. The h
We present a novel data-driven method for determining the hadronic interaction strengths of axion-like particles (ALPs) with QCD-scale masses. Using our method, it is possible to calculate the hadronic production and decay rates of ALPs, along with m
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need
The physics case for axions and axion-like particles is reviewed and an overview of ongoing and near-future laboratory searches is presented.
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultra-strong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, cha